US009058313B2

a2 United States Patent
Kadowaki

US 9,058,313 B2
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) TEST METHOD FOR DISTRIBUTED
PROCESSING SYSTEM AND DISTRIBUTED
PROCESSING SYSTEM

(71) Applicant: NEC Corporation, Minato-ku, Tokyo

(IP)
(72)

Inventor: Takayuki Kadowaki, Tokyo (JP)

(73)

")

Assignee: NEC CORPORATION, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 173 days.

@
(22)

Appl. No.: 13/754,236

Filed: Jan. 30, 2013

(65) Prior Publication Data

US 2013/0238934 Al Sep. 12, 2013

(30) Foreign Application Priority Data

Mar. 8,2012 (JP) 2012-051256

(51) Int.CL
GOGF 11/22
GOGF 11/36
USS. CL
CPC

(2006.01)
(2006.01)
(52)
GO6F 11/2294 (2013.01); GO6F 11/3672
(2013.01); GOGF 11/3688 (2013.01)
Field of Classification Search

CPC GOGF 11/2294; GOGF 11/3688; GOGF
11/3672; GOGF 11/3602; GOG6F 11/263;
GOGF 11/261; GOGF 11/2242

See application file for complete search history.

(58)

1 DISTRIBUTED PROCESSING
SYSTEM

(56) References Cited
U.S. PATENT DOCUMENTS
5,371,883 A * 12/1994 Grossetal.ccc..... 714/38.1
5,544,310 A * 8/1996 Formanetal. 714/31
6,668,275 B1* 12/2003 Alsupetal. 709/208
7,020,699 B2* 3/2006 Zhang et al. .. 709/223
2003/0233635 ALl™* 12/2003 CoOrrieooovvveevcereninnnne 717/124
2004/0060038 Al* 3/2004 Johnston-Watt et al. 717/120
2006/0075318 Al* 4/2006 Romero etal. 714/738
2009/0024873 Al* 12009 Bagetal.ccccooevnvenene. 714/32

FOREIGN PATENT DOCUMENTS

JP 962626 A 3/1997

* cited by examiner

Primary Examiner — Nadeem Igbal
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

&7

A program on a plurality of processing units executes test
input data. In the case where an error occurs so that processing
of the program is not completed normally, it is determined
that a test performed by using the input data failed. Mean-
while, in the case where an error does not occur so that
processing of the program is completed normally, if the same
feature pattern as that of the input data is stored in a storing
unit which stores feature patterns of the executed input data,
it is determined that the test performed by using the input data
succeeded, while if the feature pattern is not stored in the
storing unit, the result of the test performed by using the input
data is judged based on the result of comparing the expected
data with result data of the program.

ABSTRACT

15 Claims, 14 Drawing Sheets

105

101 EXECUTED
DATA STORING
\ DEVICE
PROCESSING DEVICE EXECUTED 114
112 PRE-UPDATE DATA
111 | DATA 103
122 104 106
102 DATABASE 3
DATA
/ A | COMPARISON
___J DEVICE 1
113 —
COMPARISON EXPEGTED
NECESSITY DATA
'QS FL,’FTLE’,{*,\,T(’;\ COMPARE) DETERMINATION CALCULATION
DEVICE PROGRAM 4 DEVICE DEVIGE
w 124
121 123
INPUT DATA USHATED DATA EXPECTED DATA

US 9,058,313 B2

Sheet 1 of 14

Jun. 16, 2015

U.S. Patent

v1vd d3103dX3
1445

33IA3d
NOILVYINOTVO
vivd
d3193dX3

\

)

-

33IA3d
NOILVYNINH313d
ALISS3O3N
NOSIHVdINOD

A A

v1vda d3lvddn
ecl

Y

[|

= vivd
a31nNo3x4
30IA3d
ONIHO1S V1vd
a31no3x3d

U

GOl

A

v1va LNdNI
Ll

\

~
~

~
A
A Y

!

NVHO0dd

/

30IA3d
ONIATddNS
v1va LNdNI

[|

30IA3d
NOSIHdVdNOD [

Ll

— \
["v1vd

vt \
2zl

v1ivd
31vadn-3dd

3asvav.ivda c0l

L1l

4
330IA3A ONISS3ID0dd

)

0]%

WN3LSAS _

ONISSIO0Hd a3lngidlsia L

l Ol

U.S. Patent

FIG. 2

Jun. 16, 2015 Sheet 2 of 14 US 9,058,313 B2

START

INPUT DATA SUPPLYING DEVICE SUPPLIES
TEST INPUT DATA TO PROCESSING DEVICE
]

PROGRAM ON PROCESSING DEVICE UPDATE DATA IN

DATABASE IN ACCORDANCE WITH INPUT DATA

COMPLETED NORMALLY ?

COMPARISON NECESSITY DETERMINATION DEVICE
GENERATES FEATURE PATTERN FROM INPUT
DATA AND PRE-UPDATE AND UPDATED DATA

|

COMPARISON NECESSITY DETERMINATION
DEVICE SEARCHES WHETHER EXECUTED
DATA HAVING SAME FEATURE PATTERN AS
GENERATED FEATURE PATTERN IS
STORED IN EXECUTED DATA
STORING DEVICE

EXECUTED
DATA OF SAME FEATURE
PATTERN EXISTS ?

YES

S7

COMPARISON NECESSITY DETERMINATION DEVICE
ADDS EXECUTED DATA INTO EXECUTED DATA
STORING DEVICE
|
EXPECTED DATA CALCULATION DEVICE
GENERATES EXPECTED DATA FROM
INPUT DATA AND PRE-UPDATE DATA
]

COMPARISON DEVICE COMPARES
UPDATED DATA WITH EXPECTED DATA

S10
NO

| _—S8

|_—S9

-
!

MATCH ?

S 812
= Y =

» YES

COMPARISON DEVICE
JUDGES PROGRAM TEST
RESULT USING INPUT
DATA SUCCEEDED

COMPARISON DEVICE
JUDGES PROGRAM TEST
RESULT USING INPUT
DATA FAILED

|
-

END

US 9,058,313 B2

Sheet 3 of 14

Jun. 16, 2015

U.S. Patent

ININNOHIANT TVNAIAIANI

[<sENRSERS)
HO1lvd 1531

ueqg . f
NYHO0Nd .
HOlve d1o A.@ /
= zOm_w__Qm_\,_oo o ONISSID0Hd
LININNOHIANT HOLVE M3aN —
NOILYINNT 1831 HOLlva 1531
LININNOHIANT TYNAIAIANI /
Lad
NYHO0Nd A.@u — 1d v.ivd
HO1VE 10 NOSIUYANGD aa VNaIAlaNT[Wvaoodad (H LNdNI 1S31
X)> T HO1vd M3N
LININNOHIANI LINIWNOHIANI TVNAIAIANI
NOILYINWIT 1S31
IWILSAS MAN
aad al1o
@ | wvdooud [A
W3LSAS 10

¢ 9Old

US 9,058,313 B2

Sheet 4 of 14

Jun. 16, 2015

U.S. Patent

700d 304N0S3IY \mmm
INIWNOYIANT
NOILVINNT LS3L
. LNIWNOHIANT TYNAIAIONI danaEs
- NYH9O0Yd
HOlvd a0 1INN Q-H TNEYNE ziz
NOSIHVdNOD
1INIWNOYIANT - TVNAIAIONI I%W_ﬂm R
NOILYINT LS3L) = \
-eee Tolva 1691
122 LNIWNOYIANT T¥NAIAIONI /
ANVED0Yd |3Lnoaxa
HOLvd Q10 -
unn (0 NVH90Ud yavd
NOSIEVdNOO| T |ynainani || HOLvE
LNIWNOYIANT oLy =
NOILLYINNT 1S3L g O = \ w
A Y 19¢ VA4 L0Z L1z
1INN 1INN
INIWIONVEYY|_|NOILYNINYZLIA - ww_ww,_zomSzm VNAIAIGNI
NOISSV | LNINNOYIANT ALISS30IN
NOILVININS 1S3l W31SAS M3IN !
\ e N ciz
L€C ¥0¢

1G¢

a31no3x3d

vivd

v Old

U.S. Patent Jun. 16, 2015 Sheet 5 of 14 US 9,058,313 B2
PREVIOUS | \npuT DATA |RESULT DATA| PROGRAM
DATA e AL NAME
(Dn) n n (PG)
1000 100 1100 ADDITION
2000 —200 1800 ADDITION
3000 300 3300 ADDITION
4000 400 4400 ADDITION

U.S. Patent Jun. 16, 2015 Sheet 6 of 14 US 9,058,313 B2

FIG. 6

a51
f [1000, 100, 1100,) < —
{ ADDITION] \ EXECUTED DATA
([2000, —200, 1800,) [POSITIVE, POSITIVE,
{ ADDITION] \ POSITIVE, ADDITION]

f (3000, 300, 3300,) DONE [POSITIVE, NEGATIVE,
L ADDITION] POSITIVE, ADDITION]

f [4000, 400, 4400, e s
\ ADDITION] | DONE

U.S. Patent Jun. 16, 2015 Sheet 7 of 14 US 9,058,313 B2

FIG. 7

Y

EXECUTE TEST NECESSITY
DETERMINATION UNIT
PREVIOUS DATA=Dn
INPUT DATA=In
OUTPUT DATA=Dn’
PROGRAM NAME=PG

L —— S21

Y

FOR EACH VALUE OF Dn. In, Dn’,
JUDGE WHETHER POSITIVE OR [S22
NEGATIVE VALUE
[POSITIVE/NEGATIVE, POSITIVE/
NEGATIVE, POSITIVE/NEGATIVE]

Y

SEARCH WHETHER DATA OF [S23
PATTERN MATCHING CONVERTED
DATA
[POSITIVE/NEGATIVE, POSITIVE/
NEGATIVE, POSITIVE/NEGATIVE]
EXISTS IN EXECUTED DATA

S26

STORE
[POSITIVE/NEGATIVE,
POSITIVE/NEGATIVE,

POSITIVE/NEGATIVE] IN
EXECUTED DATA

S27
Y /
ALLOW EMULATION
ENVIRONMENT
ARRANGEMENT UNIT TO
RETURN “VALUE CHECK ARRANGE ENVIRONMENT,
UNNECESSARY” ACQUIRE
[ENVIRONMENT ID]

v ,-S28

RETURN [ENVIRONMENT ID],
ALLOW TO CALCULATE
EXPECTED VALUE IN
EMULATION ENVIRONMENT

(END)= |

MATCHED DATA
EXISTS

US 9,058,313 B2

Sheet 8 of 14

Jun. 16, 2015

U.S. Patent

100d

NOILVINWE 1S31

304NOSTY INJWNOYIANT |—€CC

— YIAYTS
Jed o LNINNOHIANT TYNAIAIONI HOLvd 1531
N HOLVE aT10 .
= (1a .
LININNOHIANT]
777 NOILVINWE 1831 € e oo (U NW ¢
31n53x3 zOm_w__Qm_\,_ 05 wnainant || o iva man \
) v ONISSIO0Hd
V.Iva
eve~ AoIod HOLVE 1S31
1INN Allss30an| [1SFLHO INIWNONIANT TYNAIAIGNI /
INIWIDNVHHY cpe ddAl vivd
1ININNOHIANT) L\
NOILYININZ (1) vivd
TINN aa Nvao0odd ! 1NdNI
r HOYV3 - v |_VNAINGNI | [HO1va MaN 183l
L7 NOISSV | [HOEVIS VIVA|| ™ oogqavh NOSIIVANOD €O
1INN 1531 7 202 N v
v1ivd NOISHIANOD / 192 10C LLZ
a3arnoax3a vivd 9be 1ININNOHIANT TVNAIAIANI
; 4
144>
& y LINN NOILYNINYZ13a €0z IW3LSAS MAN v
LpE ALISSTDAN 1S3l J clz
¥0¢

8 Old

US 9,058,313 B2

Sheet 9 of 14

Jun. 16, 2015

U.S. Patent

HOLV Ul 40 ,83aN3D,
aNvy - INTVA '43ANID | INTIVA “¥IANTD SINIOd
HOLVW ud 40 . ¥3aN3o,
_ _ JONVHO
HOLV Ul 40 3YNL03438d JUNLOT434d eI
INVA 3INVA INVA
103 >ﬂww/m<4zm_w_/ﬂm_m\w 4y | 20 3AILYOIN 40 JAILYDIN 40 JAILYOAN NOILIAAY
/AAILISOd /ANILISOd /AAILISOd
(Ao1j0d) (SID— uQ) (SID—Ul) (S1D—uQ) m_A_mmw_
ADI10d VIVOSNOIATYd | VIVALNANI | VIVASNOIATYd | pyiioeeig
SINIOd 00Z %G+ NYIN | 002 ‘NVINOM
SINIOd S0l %G+ NV 00} ‘NVIN
JONVHO SSTHAAY | VMVOYNYM | VMYOVNW OAMOL
NOILIAaV 00}1 00l 0001
(9d) (.uQ) (un) N
JNVYN WVE90Yd | VIVALINSTY | VAVA LNANI | on5iraug

6 9Old

U.S. Patent Jun. 16, 2015 Sheet 10 of 14 US 9,058,313 B2

FIG. 10

EXECUTE TEST NECESSITY 531
DETERMINATION UNIT [~
PREVIOUS DATA=Dn
INPUT DATA=In
OUTPUT DATA=Dn’
PROGRAM NAME=PG

'

ACQUIRE DATA TYPE OF TEST L —~— 832
DATA CORRESPONDING TO
PG AND POLICY

Y

CONVERT [Dn, In, Dn’] INTO 533
FEATURE PATTERN BASED ON
ACQUIRED DATA TYPE

Y

SEARCH WHETHER DATA L —~—S34

MATCHING FEATURE PATTERN

EXISTS BASED ON ACQUIRED
POLICY

S37

STORE CONVERTED
DATA IN EXECUTED
DATA

MATCHED
DATA EXISTS

S38
] ~
ALLOW EMULATION
ENVIRONMENT ARRANGEMENT
UNIT TO ARRANGE
ENVIRONMENT, ACQUIRE

RETURN “VALUE CHECK [ENVIRONMENT ID]
UNNECESSARY” I _$39
RETURN [ENVIRONMENT ID],
ALLOW TO CALCULATE

EXPECTED VALUE IN
ENMULATION ENVIRONMENT

(END)= |

US 9,058,313 B2

Sheet 11 of 14

Jun. 16, 2015

U.S. Patent

100d
= 30HNOSTYH INJANNOHIANS
NOILVINNG 1S31

| _—¢zz

NVYHOOdd
HO1lvd dlo

INFWNOHIANG
22z] Q

NOILVINWNE 1S31

31N03X3

ADI10d

v1vQ
1831 40

1INIANNOHIANT TVNAIAIANI

1INN
NOSIdvd

WOD

f=Elt=EL)
HOlvd 1531

474
)

ONISSIO0dd
HOlvd 1531

vivd
1NdNI
1831

)

LLe

N ALISSTAAN INIWNOYIANT TYNAIAIGNI
INIWIDONVHHY She 3dAl vivd
LNIWNOYIANT)
NOILYINA3 TN Wvaooud(il
- NoIssy | LHO8V3S viva ~THNOSRIVANOD e
167 HITANVH M3N
LINN 1s3a1 7 ~
1va NOISHIANOD < 147 10Z
a3Lnoax3 vivd ove
T INANOLLYNINSILIA INIWNONHIANT TYNAIAIGNI
A 144> ALISSTDAN 1531 —
re LvE I €0z IW3LSAS M3IN
1INN LNdNI 31vd NOISSINO J
A2I70d ALISSTOAN | | "NOSIIVANOD $02

/[AdAL V1VAd 1531

YA
L0y

TYNINYGTL INFITD

(10)7

—— 0¥

€Le

Ll Old

U.S. Patent Jun. 16, 2015

FIG. 12

Sheet 12 of 14 US 9,058,313 B2

PROGRAM NAME
(Dn)

COMPARISON
OMISSION RATE

ADDITION

65%

ADDRESS CHANGE

10%

POINTS

90%

US 9,058,313 B2

Sheet 13 of 14

Jun. 16, 2015

U.S. Patent

LGC

INIANOHIANT TYNAIAIONI ey
V1vda
- Q31No3x3 HOLve 1S31
$ —<
1INN 212
100d 304N0S3Y Sl Cud
INIWNOYIANT N LINN AGIAIGN YOO CN ﬁ
NOILYINAT LS3L NOLYNINELIA | gy~ | "maN
ALISS303N 1531 N ONISSIO0N
=7 INIANOHIANT TYNAIAIQNI /
NVED0dd B ENSELE 1INN
HOLvYE d10 = Nosidvdnoo | (L™ g4 NVE90ud(1] N
192 — TYNAINGNI || HOLYE 1s31
LNIANOYIANT NN QD : ¢
NOLLVINNS 1531 NOILYNINY3L3d oz 10z Lz
ez TN ALISS3DIN 1831
INIWIONVHEYY | 07—
NOISSY | LNIWNONIANT [~ INIANOHIANT TYNAIAIQNI
NOILVINAZ = -
P WNILSAS M3IN €02 €le
1€2 ~
1404

¢l Ol

US 9,058,313 B2

Sheet 14 of 14

Jun. 16, 2015

U.S. Patent

100d 304N0S3d
1ININNOHIANT
NOILVINAZT 1S31

o0 _‘NN
NVHO0dd
G HO1vd a0
1ININNOHIANT
NOILVINNT 1S31

[|

70C -]

¢ NOSI¥VYANOD
w I 777 31N23x3
€ee viva
a3.Lno3Ix3
LG
L€¢C
w _‘vN(/
1INN 1INN
INIWIONVHIY | NOILYNINY3L3a
INJWNOYIANT [Noissy ALISSTDAN
NOILVININT 1S3l
|
LINN N¥N13Y
17NS3Y COPN:« NYHO0Yd \
IVNAIAIANI HO1v9 M3N
))
V0S| NawNOwIANT TYnaIAIONT 202 102
\
€0¢ INILSAS MAN

[sEVRER)
HOlvg 1531

c0g

\
1INN

NOSIHVdINOD

AN

ONISSID0Nd
V HOLvE 1531

\

A

vivd
1NdNI
1831

)

3%4

~—clc

//m_‘N

vl Ol

US 9,058,313 B2

1
TEST METHOD FOR DISTRIBUTED
PROCESSING SYSTEM AND DISTRIBUTED
PROCESSING SYSTEM

INCORPORATION BY REFERENCE

This application is based upon and claims the benefit of
priority from Japanese patent application No. 2012-051256,
filed on Mar. 8, 2012, the disclosure of which is incorporated
herein in its entirety by reference.

TECHNICAL FIELD

The present invention relates to a distributed processing
system configured of a plurality of processing devices, and in
particular, to a technique of testing whether or not a program
executed on each processing device operates normally.

BACKGROUND ART

As a method for testing whether or not a program executed
on a distributed processing system operates normally, a
method has been known, in which data is input to a program
executed on each processing device, and data obtained as a
result of processing is compared with expected data which is
generated separately and is expected as correct data.

For example, JP 9-62626 A (Patent Document 1) discloses
a distributed processing system in which two programs,
which are new one and old one and perform the same pro-
cessing, are executed on a distributed processing system, and
data obtained as a result of the processing by the new program
is compared with data obtained as a result of the processing by
the old program so as to test whether or not the new program
operates normally.

Patent Document 1: JP 9-62626 A

In order to test whether or not a program executed on a
distributed processing system operates normally as described
above, it has been necessary to separately generate expected
data for the number of units of input data to be input to the
program. Accordingly, in an environment where expected
data corresponding to input data cannot be generated
promptly due to a shortage of resources or the like, there is
often a case where expected data is waited for, causing a
problem that a longer time is required for the testing.

SUMMARY

An exemplary object of the present invention is to provide
a test method for a distributed processing system, which
solves the above-described problem, that is, a problem that a
longer time is required for testing in an environment where
expected data corresponding to input data cannot be gener-
ated promptly due to a shortage of resources or the like.

A test method for a distributed processing system, accord-
ing to an exemplary aspect of the present invention, is a test
method for a distributed processing system including a plu-
rality of processing units that execute a program for perform-
ing predetermined processing in accordance with input data.
The method is configured to include

supplying the input data to the program running on the
processing units;

generating a feature pattern of the input data, investigating
whether or not a feature pattern which is the same as the
generated feature pattern is stored in a storing unit which
stores the feature pattern of the input data having been tested,
and if the feature pattern which is the same as the generated
feature pattern is not stored, calculating expected data which

10

20

30

35

40

45

55

2

is expected as data to be obtained as a result of performing the
predetermined processing in accordance with the input data;
and

in a case where an error occurs so that processing of the
program is not completed normally, determining that a test
performed by using the input data failed, and in a case where
an error does not occur so that processing of the program is
completed normally, if the feature pattern which is the same
as the feature pattern of the input data is stored in the storing
unit, determining that the test performed by using the input
data succeeded, while if the feature pattern which is the same
as the feature pattern of the input data is not stored in the
storing unit, judging the result of the test performed by using
the input data based on the result of comparing the calculated
expected data with result data of the program.

A distributed processing system, according to another
exemplary aspect of the present invention, is configured to
include

a plurality of processing units that execute a program for
performing predetermined processing in accordance with
input data;

an input data supplying unit that supplies the input data to
the program of the processing units;

a storing unit that stores a feature pattern relating to the
input data having been tested;

a comparison necessity determination unit that generates
the feature pattern of the input data, and investigates whether
or not the feature pattern which is the same as the generated
feature pattern is stored in the storing unit;

an expected data calculation unit that, if the feature pattern
which is the same as the feature pattern of the input data is not
stored in the storing unit, calculates expected data which is
expected as data to be obtained as a result of performing the
predetermined processing in accordance with the input data;
and

a test result judging unit that, in a case where an error
occurs so that processing of the program is not completed
normally, determines that a test performed by using the input
data failed, and in a case where an error does not occur so that
processing of the program is completed normally, if the fea-
ture pattern which is the same as the feature pattern of the
input data is stored in the storing unit, determines that the test
performed by using the input data succeeded, while if the
feature pattern which is the same as the feature pattern of the
input data is not stored in the storing unit, judges the result of
the test performed by using the input data based on the result
of comparing the calculated expected data with result data of
the program.

With the above-described configurations, the present
invention is able to prevent a test time from becoming longer
in an environment where expected data corresponding to
input data cannot be generated promptly due to a shortage of
resources or the like.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1is ablock diagram showing a distributed processing
system according to a first exemplary embodiment of the
present invention;

FIG. 2 is a flowchart showing a test procedure in the dis-
tributed processing system according to the first exemplary
embodiment of the present invention;

FIG. 3 is ablock diagram showing a distributed processing
system related to the present invention;

FIG. 4 is ablock diagram showing a distributed processing
system according to a second exemplary embodiment of the
present invention;

US 9,058,313 B2

3

FIG. 5 is a table showing exemplary data received by a test
necessity determination unit in the distributed processing
system according to the second exemplary embodiment of the
present invention;

FIG. 6 is an illustration showing an operation of the test
necessity determination unit in the distributed processing
system according to the second exemplary embodiment of the
present invention;

FIG. 7 is a flowchart showing the operation of the test
necessity determination unit in the distributed processing
system according to the second exemplary embodiment of the
present invention;

FIG. 8 is a block diagram showing a distributed processing
system according to a third exemplary embodiment of the
present invention;

FIG. 9 is a table showing an example of data received by a
test necessity determination unit (upper table) and examples
of data types of test data and necessity determination criteria
(lower table), in the distributed processing system according
to the third exemplary embodiment of the present invention;

FIG. 10 is a flowchart showing an operation of the test
necessity determination unit in the distributed processing
system according to the third exemplary embodiment of the
present invention;

FIG. 11 is a block diagram showing a distributed process-
ing system according to a fourth exemplary embodiment of
the present invention;

FIG. 12 is a table showing examples of comparison omis-
sion rates calculated by a distributed processing system
according to the fourth exemplary embodiment of the present
invention;

FIG. 13 is a block diagram showing a distributed process-
ing system according to a fifth exemplary embodiment of the
present invention; and

FIG. 14 is a block diagram showing a distributed process-
ing system according to a sixth exemplary embodiment of the
present invention.

EXEMPLARY EMBODIMENTS

Next, exemplary embodiments of the present invention
will be described in detail with reference to the drawings.

First Exemplary Embodiment

Referring to FIG. 1, a distributed processing system 1
according to a first exemplary embodiment of the present
invention includes a plurality of processing devices 101, an
input data supplying device 102, an expected data calculation
device 103, a comparison device 104, an executed data stor-
ing device 105, and a comparison necessity determination
device 106.

Each of the processing devices 101 is an information pro-
cessing device such as a server device, having a processor
such as a microprocessor and a storing unit such as a semi-
conductor memory or a hard disk. Each of the processing
devices 101 includes a database 112 storing data 111 to be
processed, and a program 113 which updates the data 111 in
the database 112 according to input data 121.

The input data supplying device 102 is connected with the
respective processing devices 101 via networks not shown.
The input data supplying device 102 has a function of sup-
plying, to the program 113 of the respective processing
devices 101, data to be used for testing the program 113 of the
respective processing devices 101 as the input data 121.

The expected data calculation device 103 has a function of
calculating data to be expected (expected data) 124 as

10

15

20

25

30

35

40

45

50

55

60

65

4

updated data to be obtained when the program 113 updates
the data 111 in the database 112 according to the input data
121. For example, if the program 113 is a program which
updates the data 111 with a value obtained by an arithmetic
addition performed on the data 111 and the input data 121, a
value obtained by an arithmetic addition performed on the
data 111 and the input data 121 is used as the expected data
124. The expected data calculation device 103 receives the
input data 121 and pre-update data 122 from the comparison
necessity determination device 106, calculates the expected
data 124 from the input data 121 and the pre-update data 122,
and returns the expected data 124 to the comparison necessity
determination device 106.

For example, if the program 113 is a new program created
by improving a conventional program (old program), the
expected data calculation device 103 may be adapted to cal-
culate, as the expected data 124, updated data which is a result
of'the processing performed by inputting the input data 121 to
the old program.

The comparison device 104 has a function of determining
a success or a failure of a test of the program 113 using the
input data 121. When making the determination, the compari-
son device 104 first determines whether or not processing of
the program 113 has been completed normally without any
error. If an error occurs so that the processing of the program
113 has not been completed normally, the comparison device
104 determines that the test result of the program 113 using
the input data 121 is a failure, that is, the program 113 is
abnormal. On the other hand, if the processing of the program
113 has been completed normally without any error, the com-
parison device 104 determines whether or not the updated
data 123 in the database 112, updated according to the input
data 12 by the program 113, is correct. In order to make such
a determination, the comparison device 104 notifies the com-
parison necessity determination device 106 of the input data
121, the pre-update data 122 in the database 112 to be updated
according to the input data 121 by the program 113, and the
updated data 123 in the database 112 updated according to the
input data 121 by the program 113. Then, if the comparison
device 104 receives the expected data 124 as a reply to the
notification from the comparison necessity determination
device 106, the comparison device 104 compares the received
expected data 124 with the updated data 123, and based on the
comparison result, determines whether the test using the input
data 121 succeeded or failed. As such, if both units of data
match, the comparison device 104 determines that the test
succeeded, while if they do not match, the comparison device
104 determines that the test failed. Meanwhile, if the com-
parison device 104 receives a notification from the compari-
son necessity determination device 106 that a comparison is
unnecessary as a reply to the notification, the comparison
necessity determination device 106 determines that the test
succeeded, without performing a comparison.

The executed data storing device 105 has a function of
storing executed data 114 related to the input data 12 on which
a test has been executed. In the case of the present embodi-
ment, the executed data 114 is a feature pattern calculated
from the input data 121 or the like in a manner as described
below. Of course, the input data 12 or the like, which is the
source of generating the feature pattern, may be used as the
executed data 114.

The comparison necessity determination device 106 has a
function of receiving the input data 121, the pre-update data
122, and the updated data 123 from the comparison device
104, and determining whether or not it is necessary to com-
pare the updated data 123 with expected data in the test using
the input data 121. When making a determination, the com-

US 9,058,313 B2

5

parison necessity determination device 106 generates data
referred to as a feature pattern from the input data 121, the
pre-update data 122, and the updated data 123 in accordance
with a predetermined rule, and investigates whether executed
data 114 having a feature pattern which is the same as the
generated feature pattern is stored in the executed data storing
device 105. Then, if there is executed data 114 having the
same feature pattern as the generated feature pattern, the
comparison necessity determination device 106 determines
that a comparison is unnecessary, and notifies the comparison
device 104 of the fact. On the other hand, if there is no
executed data 114 having the same feature pattern as the
generated feature pattern, the comparison necessity determi-
nation device 106 adds executed data related to the input data
121 of this time into the executed data storing device 105,
provides the expected data calculation device 103 with the
input data 121 and the pre-update data 122 so as to allow the
expected data calculation device 103 to calculate the expected
data 124, and notifies the comparison device 104 of the cal-
culated expected data 124.

A method of generating a feature pattern by the compari-
son necessity determination device 106, based on the input
data 121, the pre-update data 122, and the updated data 123 in
accordance with a predetermined rule, will be described in
detail. In the below description, it is assumed that the input
data 121 is x, the pre-update data 122 is y, the updated data
123 is z, and a feature pattern generated therefrom is w.

The comparison necessity determination device 106 gen-
erates data other than a combination of data “x, y, zZ” which is
the same as a combination of the input data x, the pre-update
data y, and the updated data z, as a feature pattern w charac-
terizing a combination of the input data x, the pre-update data
y, and the updated data z. More specifically, the comparison
necessity determination device 106 judges the category to
which the input data x, the pre-update data y, and the updated
data zbelong to, and determines that the judged category to be
the feature pattern w. For example, in the case where a set of
input data x can be classified into n types of categories “gl1” to
“gn”, if any input data x is classified as a particular category
“gi”, the category “gi” may be determined to be a feature
pattern w generated from such input data x. For example, in
the case where a set of input data x can be classified into two
categories such as “positive integer” and “negative integer”, if
any input data X is a positive integer, a category “positive
integer” may be used as a feature pattern w of such input data
x. In the case where a set of input data x is classified by gender,
if any input data x is male, a category “male” may be used as
a feature pattern of such input data x. In the case where a set
of input data x can be classified by prefectures, if any input
data x is Tokyo, a category “Tokyo” may be used as a feature
pattern of such input data x. This also applies to pre-update
data y an updated data z.

While the feature pattern w is generated based on all of the
input data x, the pre-update data y, and the updated data z in
the present embodiment, the feature pattern w may be gener-
ated based on any two of the input data x, the pre-update data
y, and the updated data z, or may be generated based on any
one of the input data x, the pre-update data y, and the updated
data z. If the feature pattern w is generated based on any one
of'the input data x, the pre-update data y, and the updated data
7, it is desirable to select input data x in such a manner that a
different feature pattern w is generated for different input data
x. Further, if the feature pattern w is generated using two of
the input data x, the pre-update data y, and the updated data z,
it is desirable to select input data x and pre-update data y in
such a manner that a different feature pattern is generated for
a different combination of input data x and pre-update data y.

20

25

40

45

6

The input data supplying device 102, the expected data
calculation device 103, the comparison device 104, the
executed data storing device 105, and the comparison neces-
sity determination device 106, described above, may be
implemented by physically different information processing
devices, respectively. Meanwhile, any two of, three of, four
of, or all of the input data supplying device 102, the expected
data calculation device 103, the comparison device 104, the
executed data storing device 105, and the comparison neces-
sity determination device 106 may be implemented by the
physically same information processing device. Alterna-
tively, any one of, two of, three of, four of, or all of the input
data supplying device 102, the expected data calculation
device 103, the comparison device 104, the executed data
storing device 105, and the comparison necessity determina-
tion device 106 may be implemented by an information pro-
cessing device which is the same as any processing device
101.

Further, the expected data calculation device 103, the com-
parison device 104, the executed data storing device 105, and
the comparison necessity determination device 106,
described above, may be provided in common to all process-
ing devices 101. Meanwhile, any one of, two of; three of| orall
of the expected data calculation device 103, the comparison
device 104, the executed data storing device 105, and the
comparison necessity determination device 106 may be pro-
vided to each processing device 101 or provided in common
to some processing devices 101.

Next, a procedure of a test method, to be executed by the
distributed processing system according to the present
embodiment, will be described with reference to FIG. 1 and
the flowchart of FIG. 2. It should be noted that when a test
using a series of input data 121 begins, the stored content of
the executed data storing device 105 is cleared to a state where
no executed data 114 is stored at all.

First, the input data supplying device 102 supplies input
data 121 to be used for testing to each processing device 101
(step S1). For example, the input data supplying device 102
has a set of input data 121 to be used for testing, and takes out
one unit of input data 121 from the set and supplies it to one
processing device 101, while supplies another unit of data,
taken from the set, to another processing device 101. In this
way, the input data supplying device 102 performs testing of
all processing devices 101 in parallel. Hereinafter, by focus-
ing on one processing device 101, a procedure of a test using
the data input to such a processing device 101 will be
described.

The processing device 101 executes a program 113 using
data 121, having been input, as input data. The program 113
performs calculation and logical operation in accordance
with a programmed procedure, and updates data 111 in the
database 112 according to the input data 121 (step S2). The
comparison device 104 determines whether or not the pro-
cessing of the program 113 has been completed normally
without any error (step S3). If an error occurred, the compari-
son device 104 determines that the test of the program 113
using the input data 121 of this time ended in failure (step
S12). On the other hand, even when the test has been com-
pleted normally without any error, as it is not always the case
that the calculation result of the program 113 is correct, the
comparison device 104 continues the test procedure using the
input data 121 of this time.

First, the comparison device 104 notifies the comparison
necessity determination device 106 of the input data 121, the
pre-update data 122, and the updated data 123, and the com-
parison necessity determination device 106 generates a fea-
ture pattern from the notified data (step S4). Next, the com-

US 9,058,313 B2

7

parison necessity determination device 106 searches the
executed data storing device 105 and investigates whether or
not executed data having a feature pattern which is the same
as the generated feature pattern is stored therein (step S5).
Then, if the executed data of the same feature pattern is stored
in the executed data storing device 105, the comparison
necessity determination device 106 notifies the comparison
device 104 that comparison is unnecessary, and the compari-
son device 104 determines that the test of the program 113
using the input data 121 of this time ended successfully (steps
S6, S11).

On the other hand, if executed data of the same feature
pattern is not stored in the executed data storing device 105,
the comparison necessity determination device 106 adds the
generated feature pattern into the executed data storing device
105 as new executed data (step S7). Then, the comparison
necessity determination device 106 notifies the expected data
calculation device 103 of the input data 121 and the pre-
update data 122, and the expected data calculation device 103
calculates expected data 124 based on the input data 121 and
the pre-update data 122, and notifies the comparison device
104 of the expected data 124 via the comparison necessity
determination device 106 (step S8). The comparison device
104 compares the updated data 123 with the expected data
124 (step S9). Then, if the updated data 123 and the expected
data 124 match, the comparison device 104 determines that
the test of the program 113 using the input data 121 of this
time ended successfully (steps S10, S11). However, if the
updated data 123 and the expected data 124 do not match, the
comparison device 104 determines that the test of the pro-
gram 113 using the input data 121 of this time ended in failure
(steps S10, S12).

In this way, the test of the program 113 of the processing
device 101 using one unit of input data 121 ends. If the test
result is a success, a similar test will be performed repeatedly
using another unit of input data 121. If the test result is a
failure, the test procedure is terminated, and investigation of
the cause of the failure, identification of the failed part, and
improvements thereof will be conducted, for example.

Next, advantageous effects of the present embodiment will
be described.

According to the present embodiment, even if expected
data corresponding to input data cannot be generated
promptly due to a resource shortage or the like, it is possible
to prevent a test period from becoming longer. This is because
as the system is configured not to generate new expected data
if executed data having the same feature pattern as the feature
pattern generated from the input data 121, the pre-update data
122, and the updated data 123 is stored in the executed data
storing device 105, frequency of generating expected data is
reduced, so that frequency of waiting for expected data is
reduced.

Further, according to the present embodiment, it is possible
to perform testing sufficiently compared with the case where
the number of units of data to be compared is simply reduced.
One reason is that the program 113 is executed with respect to
every input data to check whether or not processing is com-
pleted normally without any error. Thereby, it is possible to
find a failure that an error occurs with respect to a pattern of
particular input data. Another reason is that in the case where
program processing is completed normally without any error,
if the feature pattern generated from the input data 121, the
pre-update data 122, and the updated data 123 of this time
differs from the feature patterns generated from input data
and the like having been tested, in other words, if the input
data and the like of this time are of different category or
different pattern from that ofthe input data and the like having

40

45

8

been tested, the updated data 123 which is a result of the
program processing and the expected data 124 are compared
s0 as to check whether or not the result of the program pro-
cessing is correct. On the other hand, if the feature pattern
generated from the input data and the like is the same as the
feature pattern generated from the input data and the like
having been tested, in other words, if the input data and the
like are of the same category or the same pattern as that of the
input data and the like having been tested, as the possibility of
the processing result of the program being correct is high, it is
determined that the result of the test of the program ended
successfully without performing comparison between the
updated data 123 which is the processing result of the pro-
gram and the expected data 124.

While the program 113 to be tested is a program to update
the database 112 in the present embodiment, it is possible to
test a program not involving updating of a database. This
means that the present invention is capable of performing a
test of any program performing predetermined processing
based on input data.

Further, while the program 113 to be tested is one type of
program in the present embodiment, a plurality of types of
programs may be tested. In that case, the comparison neces-
sity determination device 106 may have a rule for generating
a feature pattern corresponding to an identifier specifying a
program, and generate a feature pattern in accordance with
the rule. Further, the executed data 114 may include an iden-
tifier specifying a program, and the comparison necessity
determination device 106 may investigate whether or not
executed data 114, having the same identifier as the identifier
specifying the program to be tested and also having the same
feature pattern as the generated feature pattern, is stored in the
executed data storing device 105.

Second Exemplary Embodiment

Next, a second exemplary embodiment of the present
invention will be described in detail. In this embodiment,
description will be given on a test method for confirming that
the program of a new system has the same result as the
program of an old system in the case where the old system, in
which input data written on a file is reflected on a database
through batch processing, is transformed to the new system in
which respective units of data in a database are executed
simultaneously in parallel on individual environments which
are divided and arranged respectively.

First, a problem to be solved by the present embodiment
will be described.

In recent years, with the development of the distributed
processing technique, it is possible to reduce the processing
time of existing services by performing distributed parallel
processing on a large quantity of data by means of a plurality
of servers. As such, a movement of transferring an existing
system to a new system utilizing such a distributed processing
technique has been active. While it is necessary to check and
ensure that the processing of the existing system is realized
similarly in the new system, there is a case where it is impos-
sible to know the specification of the existing system due to
lack of system specification, lack of engineers who are
entirely familiar with the system, and so on. In that case, it is
possible to check that the same function as that of the existing
system is implemented in the new system by performing a test
using the input data and the processing result of the existing
system to verify that a result of inputting the same data into
the new system is the same as that of the existing system.

However, an access to the old database (DB) used by the
old system, in order to compare the calculation result by the

US 9,058,313 B2

9

program of the new system with the result of calculation by
the old program, puts a load on the old DB in operation,
causing degradation of the service performance provided by
the old system, for example. Further, in order to prevent such
an adverse effect on the old system, in the case of preparing a
single emulation environment in which an environment
which is completely the same as that of the old system is
emulated and calculating an emulation result by the old pro-
gram to check the validity of the calculation result of the new
program, as the new system performs distributed parallel
processing on a large quantity of data, a massive load is put on
the single emulation environment at once, so that calculation
of the emulation result by the old program cannot be com-
pleted in time. As such, the emulation environment becomes
a bottleneck.

FIG. 3 shows a distributed processing system related to the
present invention. The distributed processing system shown
in FIG. 3 is a system for validating a new system when
transferring an old system, in which data D1~Dnin an old DB
is updated to D1'~Dn' with input data [1~In input to an old
batch program, into the new system configured of a group of
individual environments in which the respective units of data
D1~Dn are processed in a distributed and parallel manner by
the new program individually. The outline of the operation of
the distributed processing system related to the present inven-
tion, shown in FIG. 3, will be described below.

Test input data is prepared by converting input data before-
hand, and an instruction is made to perform distributed par-
allel processing simultaneously on the test input data on indi-
vidual environments through test batch processing. An
individual environment receiving the input data I1 updates the
previous data D1 to D1' by the new program. Next, by the
comparison unit, the data I1 and the data D1 are transmitted to
a test emulation environment. Upon receipt of the data I1 and
the data D1, the test emulation environment updates the origi-
nal data D1 to Del' using the old program, and returns the data
to the comparison unit. Upon receipt of the data Del', the
comparison unit compares the data D1' with the data Del’,
and ifthey match, the comparison unit determines that the test
succeeded, while if they do not match, the comparison unit
determines that the test failed. According to success or failure
of'the comparison results with respect to all data, it is verified
that the new system has the same result as that of the old
system.

As described above, as execution of the new program in
individual environments is performed in a distributed and
parallel manner, execution of the old program in the test
emulation environments is also performed in parallel. At that
time, if the emulation environments are not able to perform
parallel processing at the same level as that of the new system,
the test emulation environments become a bottleneck.

Further, in order to realize emulation environments in
which distributed parallel processing is able to be performed
in the same manner as that of the new system, it is necessary
to prepare emulation environments corresponding to the size
of'the new system, whereby the cost thereof becomes too high
for a test environment.

On the other hand, in the case where an emulation result by
the old program is prepared beforehand, as it is necessary to
generate an emulation result with respect to a large quantity of
data, a long time is needed to generate it beforehand. Further,
as it is necessary to find an emulation result, to be compared
with a result calculated in a distributed individual environ-
ment of the new system, from a large quantity of emulation
results, the cost for the search becomes also high.

As such, in the present embodiment, in the case of testing
a system for distributed parallel processing, by automatically

15

30

40

45

65

10

narrowing whether or not to calculate an emulation result by
the old program to be compared with individual units of result
data executed in parallel, at the time of testing, it is possible to
calculate an emulation result by the old program with the
minimum resources. Further, the present embodiment
enables to perform a test within a processing time which does
not affect the advantages of the distributed processing envi-
ronments provided by the new system.

According to the present embodiment, it is determined
whether or nota comparison with emulation result data by the
old program is required at the time of testing, and only when
emulation result data by the old program is required, an
emulation result by the old program is generated using the
emulation environment and the result is compared with the
test result. Thereby, it is possible to efficiently perform veri-
fication by the parallel processing of a large quantity of test
data using the minimum emulation environment.

Hereinafter, the configuration of operation of the present
embodiment will be described in detail.

Description of Configuration

Referring to FIG. 4, a distributed processing system
according to the present embodiment includes a new system
204 to betested, having a plurality of individual environments
203 each of which receives one unit of input data In and
updates previous data Dn in an individual DB 202 to result
data Dn', by a new batch program 201. The distributed pro-
cessing system also includes a batch server 213 to which test
input data 211 is input and which executes test batch process-
ing 212, test emulation environments 222 each of which
calculates an emulation result Del' by the old batch program
221, a test emulation environment resource pool 223 which
maintains the test emulation environments 222 in an execut-
able state, an emulation environment arrangement unit 231
which dynamically assigns the test emulation environments
222 from the test emulation environment resource pool 223
upon request, a test necessity determination unit 241 which
determines whether or not an emulation result by the test
emulation environment resource pool 223 should be gener-
ated in the test emulation environment 222, executed data 251
in which an emulation result by the old batch program 221 is
generated and data compared with a calculation result by the
new batch program 201 is recorded, and a comparison unit
261 which compares an emulation result by the old batch
program 221 with a calculation result by the new batch pro-
gram 201 and determines whether the test succeeded or
failed.

FIG. 5 shows exemplary configurations of data received by
the test necessity determination unit 241 from the comparison
unit 261. These examples show the case where the new batch
program 201 has a configuration of performing addition pro-
cessing. The data to be received is a combination of previous
data, input data, result data, and a program name.
Description of Operation

Regarding all units of test input data 211, a request for
simultaneous processing is given to the new system 204 by
the batch processing 212 on the test batch server 213.

The new system 204 performs processing on all units of
data simultaneously on the individual environments 203 cor-
responding to the respective units of data. In this step, on each
of the environments 203, the new batch program 201 is
executed using one unit of input data In as an input to change
one unit of previous data Dn to data Dn'.

On each of the environments 203, the comparison unit 261
transmits the test input data In, the previous data Dn, the result
data Dn', and a program name PG, to the test necessity deter-
mination unit 241.

US 9,058,313 B2

11

In accordance with the flowchart of FIG. 7, the test neces-
sity determination unit 241 determines that whether each of
the received units of data [Dn, In, Dn'] has a positive value or
a negative value and converts it into a positive/negative pat-
tern (steps S21, S22), and checks whether a pattern which is
the same as the positive/negative pattern is stored in the
executed data 251 (step S23). If the pattern is stored, the test
necessity determination unit 241 replies that comparison with
the emulation result by the old program 221 is unnecessary,
whereby the execution in that environment ends normally
(steps S24, S25). On the other hand, if data ofthe same pattern
is not stored in the executed data 251, the test necessity
determination unit 241 stores the positive/negative pattern of
this time in the executed data 251 (step S26), and instructs the
emulation environment arrangement unit 231 to assign a test
emulation environment (step S27). Then, in the assigned test
emulation environment, the test necessity determination unit
241 executes the old program 221 using the data [Dn, In, Dn',
PG], calculates an emulation result by the old program 221,
and returns the emulation result to the comparison unit 261
(step S28).

When the comparison unit 261 receives the emulation
result by the old program 221, the comparison unit 261
checks that the data Dn' calculated by the new program 201
matches the emulation result by the old program 221.

By performing such processing simultaneously, it is veri-
fied that the same result as that of the existing system is
obtained on the new system 204.

FIG. 5 shows examples of data provided to the test neces-
sity determination unit 241. For the sake of explanation, the
case of sequentially executing those units of data from the
data of the upper row will be described with reference to FIG.
6. When the test necessity determination unit 241 receives
data [1000, 100, 1100, addition], the test necessity determi-
nation unit 241 first determines whether each piece of data
[Dn, In, Dn'] is positive or negative, and converts the data into
[positive, positive, positive, addition]. As the data [positive,
positive, positive, addition] is not in the executed data, the test
necessity determination unit 241 registers the data [positive,
positive, positive, addition] in the executed data, calculates an
emulation result by the old program 221 using the test emu-
lation environment 222, and returns the emulation result to
the comparison unit 261. Similarly, regarding data [2000,
-200, 1800, addition], as data [positive, negative, positive,
addition] does not exist in the executed data, the test necessity
determination unit 241 calculates a test emulation result.
Then, the test necessity determination unit 241 convers data
[3000, 300, 3300, addition]. This data is converted to [posi-
tive, positive, positive, addition]. As this data exists in the
executed data, calculation of an emulation result by the old
program 221 is omitted.

As described above, as calculation of an emulation result
by the old program 221 can be omitted for some units of data,
it is possible to reduce the resources of the test emulation
environments 222 to be used and to solve the bottleneck of the
test emulation environments.

Description of Effects

According to the present embodiment, the following
advantageous effects can be achieved:

(a) By determining the necessity of generating an emula-
tion result by the old program to perform verification at the
time of execution, and generating an emulation result by the
old program only when it is required, testing can be per-
formed efficiently even when a large quantity of data is
executed in parallel simultaneously.

(b) Compared with the case of generating emulation result
data by the old program in advance, a total processing time

20

25

35

40

45

65

12

(period from the beginning until the end of the test including
collection of emulation result data by the old program) can be
reduced.

(c) As it is not necessary to access the old system, testing
can be performed in parallel with the old system in operation.

(d) As it is checked that an operation similar to that of the
existing system is realized, the test can be performed even if
the specification of the existing system is not clearly known,
and further, there is no need to create test items.

Third Exemplary Embodiment

FIG. 8 is ablock diagram showing a distributed processing
system according to a third exemplary embodiment of the
present invention. In the present embodiment, the types of
data to be handled by each program and the test necessity
policy are defined in advance, and the present embodiment
includes a test necessity determination unit 341 which deter-
mines the test necessity according to such a definition.

The test necessity determination unit 341 includes a data
type 342 of test data, a necessity policy 343, a data conversion
unit 34, a data search unit 345, and a test handler 346.

The data type 342 of test data includes the type of data of a
feature pattern generated from previous data, input data, and
result data, corresponding to a program name of the new batch
program 201. Further, the necessity policy 343 includes a
policy for determining the necessity.

The data conversion unit 344 has a function of generating
a feature pattern according to the data type described in the
data type 342 of' the test data. The data search unit 345 has a
function of searching whether the feature pattern generated
by the data conversion unit 344 exists in the executed data
251, according to the necessity policy 343. The test handler
346 handles control of the entire test necessity determination
unit 341.

In the present embodiment, the test necessity determina-
tion unit 341 performs processing shown in the flowchart of
FIG. 10. First, the test data handler 346 of the test necessity
determination unit 341 acquires a data type and a necessity
policy matching the PG (program name) in the data [Dn, In,
Dn', PG], from the data type 342 of the test data and the
necessity policy 343 (steps S31, S32). Then, the test data
handler 346 converts the data [Dn, In, Dn'] into a feature
pattern according to the data type, using the data conversion
unit 344 (step S33). Then, the test data handler 346 compares
the data in the executed data 251 with the feature pattern
based on the policy, using the data search unit 345 (step S34).
The following steps S35 to S39 shown in FIG. 10 are the same
as steps S24 to S28 of FIG. 7.

In FIG. 9, the upper table shows data received by the test
necessity determination unit 341 from the comparison unit
261. The lower table shows examples of data types of test data
and necessity policies. For example, when the test necessity
determination unit 341 receives data [“man, 100”, man +5%,
105, points], by using the data “points” as the key, the test
necessity determination unit 341 acquires a data type [“gen-
der, value”, “gender, value”, -] and a policy [“gender of Dn
match” and “gender of In match”]. Next, the test necessity
determination unit 341 converts the data [“man, 100”, man
+5%, 105] according to the data type and obtains [“man,
1007, “man, 57, —]. Then, the test necessity determination unit
341 searches whether data corresponding to the policy [“gen-
der of Dn match” and “gender of In match”] is presence or
absence in the converted data and the executed data, and if
there is matched data, the test necessity determination unit
341 determines that a test is unnecessary.

US 9,058,313 B2

13

The configuration and the operation other than those
described above are the same as those of the second exem-
plary embodiment.

Fourth Exemplary Embodiment

FIG. 11 is a block diagram showing a distributed process-
ing system according to a fourth exemplary embodiment. The
present embodiment has a configuration that the data type 342
of'the test data and the necessity policy 343 in the test neces-
sity determination unit 341 are input from a client terminal
402 or are updated, using a test data type/necessity policy
input unit 401. Further, when changing the data type 342 of
test data and the necessity policy 343, the present embodi-
ment has a configuration capable of referring to a comparison
omission rate 403, which records, for each program, the rate
of the number of cases determined that emulation is unnec-
essary by the test necessity determination unit 341 with
respect to the entire number of tests, or referring to the
executed data 251.

FIG. 12 shows examples of the comparison omission rate
403 in the present embodiment. If there are programs named
“addition”, “address change”, “point” and the like similar to
the case of the third exemplary embodiment, for each of the
programs, the test necessity determination unit 241 calculates
the rate of the number of times that test necessity determina-
tion unit 241 determines that emulation is unnecessary and
returns “comparison unnecessary”’, with respect to the num-
ber of times that the comparison unit 261 inquires the test
necessity determination unit 241 of the necessity, and records
the rate.

For example, in the case where a test is performed in an
environment where the data type 342 of a unit of test data and
the necessity policy 343 are defined, if the number of patterns
registered in the executed data 251 is small and the compari-
son omission rate 403 is high, it can be determined that tests
have not been performed for a sufficient number of cases. In
that case, by defining the data type 342 of' the test data and the
necessity policy 342 in detail (in the case of addition as shown
in FIG. 9, not only positive and negative of values but also
types of integer, real number, or imaginary number are added)
and by setting high-level rules, it is possible to make an
adjustment so as to perform tests for a sufficient number of
cases. Further, in the case where emulation results by the old
program are calculated for too many cases so that the com-
parison omission rate 403 is low, it is possible to make an
adjustment so as to reduce the calculation cost of emulation
by easing the data type 342 of the test data and the necessity
policy 342. In this way, tradeoff between the coverage of the
test cases and the cost of the tests is adjusted.

Fifth Exemplary Embodiment

FIG. 13 is a block diagram showing a distributed process-
ing system according to a fifth exemplary embodiment of the
present invention. In the present embodiment, a test necessity
determination unit 401 is provided in each individual envi-
ronment 203. This means that the present embodiment has an
exemplary configuration in which the test necessity determi-
nation units are also operated in a distributed and parallel
manner. In that case, the respective test necessity determina-
tion units 401 share the common executed data 251 using
distributed shared memory or the like, for example.

If the parallelism of the new system 204 becomes high so
that the load is concentrated on the test necessity determina-
tion units causing a bottleneck, by operating the test necessity
determination units in a distributed and parallel manner, it is

20

40

45

50

14

possible to prevent a state where the test necessity determi-
nation units themselves cause a bottleneck.

Sixth Exemplary Embodiment

FIG. 14 is a block diagram showing a distributed process-
ing system according to a sixth exemplary embodiment of the
present invention. The present embodiment includes a result
return unit 501 instead ofthe comparison unit 261 provided in
each of the individual environments 203 in the second to fifth
exemplary embodiments, and also includes a comparison unit
502 on the test batch server 213 side. As such, the present
embodiment is configured such that necessary data is
returned from the test environment to the batch processing
side, and the returned result is applied with comparison pro-
cessing on the batch server side.

In the case of the second to fifth exemplary embodiments,
as an extension of calculation by the new batch program 201
in each individual environment, determination by the test
necessity determination unit and calculation of an emulation
result by the old batch program 221 are performed via the
comparison unit 261. On the other hand, in the present
embodiment, when calculation by the new batch program 201
is completed, the result is immediately returned to the test
batch processing 212 side. As such, the present embodiment
is usable when it is desired to perform measurement of the
processing time together on the individual environment 203.

While the present invention has been described with refer-
ence to the exemplary embodiments, the present invention is
not limited to the exemplary embodiments disclosed above,
and various additions and changes can be made therein. For
example, the individual environments of the new system may
be configured of physically-different information processing
devices, or may be configured of virtual servers constructed
on the same information processing device.

INDUSTRIAL APPLICABILITY

The present invention is applicable to verification of a
distributed processing system, and in particular, to verifica-
tion of a system for performing distributed parallel process-
ing on a large quantity of data.

The whole or part of the exemplary embodiments disclosed
above can be described as, but not limited to, the following
supplementary notes.

(Supplementary Note 1)

A distributed processing system comprising:

a plurality of processing units that execute a program for
performing predetermined processing in accordance with
input data;

an input data supplying unit that supplies the input data to
the program of the processing units;

an executed data storing unit that stores executed data
relating to the input data having been tested;

a comparison necessity determination unit that generates a
feature pattern of the input data, and determines whether or
not the executed data having a feature pattern which is the
same as the generated feature pattern is stored in the executed
data storing unit;

an expected data calculation unit that, if the executed data
having the feature pattern which is the same as the feature
pattern of the input data is not stored in the executed data
storing unit, calculates expected data which is expected as
data to be obtained as a result of performing the predeter-
mined processing in accordance with the input data; and

a test result judging unit that, in a case where an error
occurs so that processing of the program is not completed

US 9,058,313 B2

15

normally, determines that a test performed by using the input
data failed, and in a case where an error does not occur so that
processing of the program is completed normally, if the
executed data having the feature pattern which is the same as
the feature pattern of the input data is stored in the executed
data storing unit, determines that the test performed by using
the input data succeeded, while if the executed data having the
feature pattern which is the same as the feature pattern of the
input data is not stored in the executed data storing unit,
judges a result of the test performed by using the input data
based on a result of comparing the calculated expected data
with result data of the program.

(Supplementary Note 2)

The distributed processing system, according to supple-
mentary note 2, wherein

the feature pattern is data representing a category to which
the input data belongs.

(Supplementary Note 3)

The distributed processing system, according to supple-
mentary note 1 or 2, wherein

the feature pattern is data representing a category to which
the input data belongs if the predetermined processing is
processing to update data in a database of each of the pro-
cessing units in accordance with the input data, and also
representing a category to which at least one of pre-update
data and updated data belongs.

(Supplementary Note 4)

The distributed processing system, according to any of
supplementary notes 1 to 3, wherein the executed data is the
feature pattern.

(Supplementary Note 5)

The distributed processing system, according to any of
supplementary notes 1 to 3, wherein the executed data is data
which is the source of generating the feature pattern.
(Supplementary Note 6)

The distributed processing system, according to any of
supplementary notes 1 to 5, wherein

the executed data includes an identifier specifying the pro-
gram, and

the comparison necessity determination unit investigates
whether or not the executed data, having an identifier which is
the same as the identifier specifying the program and having
the feature pattern which is the same as the generated feature
pattern, is stored in the executed data storing unit.
(Supplementary Note 7)

The distributed processing system, according to any of
supplementary notes 1 to 6, wherein

the expected data calculation unit calculates, if the program
corresponds to a new program of two old and new programs,
data to be obtained as a result of performing the predeter-
mined processing in accordance with the input data by the old
program, as the expected data.

(Supplementary Note 8)

The distributed processing system, according to any of
supplementary notes 1 to 7, wherein

the expected data calculation unit includes a resource pool
of a test emulation environment for calculating the expected
data, and an emulation environment arrangement unit that
calculates the expected data by acquiring a resource of the test
emulation environment from the resource pool.
(Supplementary Note 9)

The distributed processing system, according to any of
supplementary notes 1 to 8, wherein

the comparison necessity determination unit has a rule for
generating the feature pattern in association with an identifier
specifying the program, and generates the feature pattern in
accordance with the rule.

10

15

20

25

30

35

40

45

50

55

60

65

16

(Supplementary Note 10)

The distributed processing system, according to any of
supplementary notes 1 to 9, wherein

the comparison necessity determination unit calculates, for
each of the programs, a rate of the number of tests determined
to be successful, in which the comparison has been omitted,
with respect to the total number of tests, as a comparison
omission rate.

(Supplementary Note 11)

A test method to be executed by a distributed processing
system, the distributed processing system including a plural-
ity of processing units that execute a program for performing
predetermined processing in accordance with input data, an
input data supplying unit, a comparison necessity determina-
tion unit, an expected data calculation unit, a comparison unit,
and an executed data storing unit that stores executed data
relating to the input data having been executed, the method
comprising:

by the input data supplying unit, supplying the input data to
the program running on the processing units;

by the program of the processing units, performing the
predetermined processing in accordance with the input data;

by the comparison necessity determination unit, generat-
ing a feature pattern of the input data, and investigating
whether or not the executed data having a feature pattern
which is the same as the generated feature pattern is stored in
the executed data storing unit;

by the expected data calculation unit, if the executed data
having the feature pattern which is the same as the feature
pattern of the input data is not stored in the executed data
storing unit, calculating expected data which is expected as
data to be obtained as a result of performing the predeter-
mined processing in accordance with the input data; and

by the comparison unit, in a case where an error occurs so
that processing of the program is not completed normally,
determining that a test performed by using the input data
failed, and in a case where an error does not occur so that
processing of the program is completed normally, if the
executed data having the feature pattern which is the same as
the feature pattern of the input data is stored in the executed
data storing unit, determining that the test performed by using
the input data succeeded, while if the executed data having the
feature pattern which is the same as the feature pattern of the
input data is not stored in the executed data storing unit,
judging a result of the test performed by using the input data
based on a result of comparing the calculated expected data
with result data of the program.

(Supplementary Note 12)

The test method for the distributed processing system,
according to supplementary note 11, wherein

the feature pattern is data representing a category to which
the input data belongs.

(Supplementary Note 13)

The test method for the distributed processing system,
according to supplementary note 11 or 12, wherein

the feature pattern is data representing a category to which
the input data belongs if the predetermined processing is
processing to update data in a database of each of the pro-
cessing units in accordance with the input data, and also
representing a category to which at least one of pre-update
data and updated data belongs.

(Supplementary Note 14)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 13, wherein the
executed data is the feature pattern.

US 9,058,313 B2

17

(Supplementary Note 15)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 13, wherein the
executed data is data which is the source of generating the
feature pattern.

(Supplementary Note 16)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 15, wherein

the executed data includes an identifier specifying the pro-
gram, and

in the investigating, the comparison necessity determina-
tion unit investigates whether or not the executed data, having
an identifier which is the same as the identifier specifying the
program and having the feature pattern which is the same as
the generated feature pattern, is stored in the executed data
storing unit.

(Supplementary Note 17)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 16, wherein

the expected data calculation unit calculates, if the program
corresponds to a new program of two old and new programs,
data to be obtained as a result of performing the predeter-
mined processing in accordance with the input data by the old
program, as the expected data.

(Supplementary Note 18)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 17, wherein

the expected data calculation unit calculates the expected
data by acquiring, from a resource pool of a test emulation
environment for calculating the expected data, a resource of
the test emulation environment.

(Supplementary Note 19)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 18, wherein

the comparison necessity determination unit has a rule for
generating the feature pattern in association with the identi-
fier specifying the program, and generates the feature pattern
in accordance with the rule.

(Supplementary Note 20)

The test method for the distributed processing system,
according to any of supplementary notes 11 to 19, wherein

the comparison necessity determination unit calculates, for
each of the programs, a rate of the number of tests determined
to be successful, in which the comparison has been omitted,
with respect to the total number of tests, as a comparison
omission rate.

The invention claimed is:

1. A test method for a distributed processing system includ-
ing a plurality of processing units that execute a program for
performing predetermined processing in accordance with
input data, the method comprising:

supplying input data to the program running on the pro-

cessing units;

generating a feature pattern of the supplied input data,

determining whether or not a feature pattern which is the
same as the generated feature pattern is stored in a stor-
ing unit that stores feature patterns corresponding to
previously tested input data, and if the feature pattern
which is the same as the generated feature pattern is not
stored, calculating expected data which is data expected
to be obtained as a result of performing the predeter-
mined processing in accordance with the supplied input
data;

determining, in a case where an error occurs so that the

predetermined processing of the program is not com-
pleted normally, that a test performed by using the sup-
plied input data failed; and

10

15

25

30

40

45

50

18

in a case where an error does not occur so that the prede-
termined processing of the program in accordance with
the supplied input data is completed normally;

determining, if the feature pattern which is the same as the
generated feature pattern of the input data is stored in the
storing unit, that the test performed by using the supplied
input data succeeded; and

determining, if the feature pattern which is the same as the
generated feature pattern of the input data is not stored in
the storing unit, a result of the test performed by using
the supplied input data by comparing the calculated
expected data with result data of the program.

2. The test method for the distributed processing system,

according to claim 1, wherein

a feature pattern is data representing a category to which
corresponding input data belongs.

3. The test method for the distributed processing system,

according to claim 1, wherein

a feature pattern is data representing a category to which
corresponding input data belongs, and, if the predeter-
mined processing is processing to update data in a data-
base of each of the processing units in accordance with
the input data, also representing a category to which at
least one of the data in the database before the processing
to update the data and the data in the database after the
processing to update the data in the database belongs.

4. The test method for the distributed processing system,

according to claim 1, wherein

the storing unit stores a set of the feature patterns and an
identifier specifying a corresponding program, and

the determining whether or not a feature pattern which is
the same as the generated feature pattern is stored in a
storing unit includes determining whether or not an
identifier, which is the same as an identifier of the
executed program, and the feature pattern, which is the
same as the generated feature pattern, is stored in the
storing unit.

5. The test method for the distributed processing system,

according to claim 1, wherein

the calculating the expected data includes, if the program
corresponds to a new program that replaces an old pro-
gram, calculating, as the expected data, data to be
obtained as a result of performing the predetermined
processing in accordance with the supplied input data
input to the old program.

6. The test method for the distributed processing system,

according to claim 1, wherein

the calculating the expected data includes calculating the
expected data by acquiring, from a resource pool of test
emulation environments, a test emulation environment
to generate an emulation result as the expected data.

7. The test method for the distributed processing system,

according to claim 1, wherein

the generating the feature pattern is performed in accor-
dance with a rule for generating the feature pattern, the
rule having been stored in association with an identifier
of the executed program.

8. A distributed processing system comprising:

a plurality of processing units configured to execute a
program for performing predetermined processing in
accordance with input data;

an input data supplying unit configured to supply input data
to the program of the processing units;

a storing unit that stores feature patterns corresponding to
previously tested input data;

a comparison necessity determination unit configured to
generate a feature pattern of the supplied input data, and

US 9,058,313 B2

19

determine whether or not a feature pattern which is the
same as the generated feature pattern is stored in the
storing unit;

an expected data calculation unit configured to, if the fea-
ture pattern which is the same as the generated feature
pattern is not stored in the storing unit, calculate
expected data which is data expected to be obtained as a
result of performing the predetermined processing in
accordance with the supplied input data; and

a test result judging unit configured to, in a case where an
error occurs so that the predetermined processing of the
program is not completed normally, determine that a test
performed by using the supplied input data failed, and, in
a case where an error does not occur so that the prede-
termined processing of the program in accordance with
the supplied input data is completed normally, if the
feature pattern which is the same as the generated fea-
ture pattern of the input data is stored in the storing unit,
determine that the test performed by using the supplied
input data succeeded, and, if the feature pattern which is
the same as the generated feature pattern of the input
data is not stored in the storing unit, determine a result of
the test performed by using the supplied input data by
comparing the calculated expected data with result data
of the program.

9. The distributed processing system, according to claim 8,

wherein

a feature pattern is data representing a category to which
corresponding input data belongs.
10. The distributed processing system, according to claim

8, wherein

a feature pattern is data representing a category to which
corresponding input data belongs, and, if the predeter-
mined processing is processing to update data in a data-
base of each of the processing units in accordance with
the input data, also representing a category to which at
least one of the data in the database before the processing
to update the data and the data in the database after the
processing to update the data in the database belongs.

11. The distributed processing system, according to claim

8, wherein

the storing unit is further configured to store a set of the
feature patterns and an identifier specifying a corre-
sponding program, and

the comparison necessity determination unit is further con-
figured to determine whether or not an identifier, which
is the same as an identifier of the executed program, and
the feature pattern, which is the same as the generated
feature pattern, is stored in the storing unit.

12. The distributed processing system, according to claim

8, wherein

the expected data calculation unit is further configured to
calculate, if the program corresponds to a new program
that replaces an old program, data to be obtained as a

w

20

25

30

35

40

45

50

20

result of performing the predetermined processing in
accordance with the supplied input data input to the old
program, as the expected data.

13. The distributed processing system, according to claim

, wherein

the expected data calculation unit is further configured to
calculate the expected data by acquiring, from a resource
pool of test emulation environments, a test emulation
environment to generate an emulation result as the
expected data.

14. The distributed processing system, according to claim

, wherein

the comparison necessity determination unit is further con-
figured to generate the generated feature pattern in
accordance with a rule for generating the feature pattern,
the rule having been stored in association with an iden-
tifier of the executed program.

15. A distributed processing system comprising:

aplurality of processing means for executing a program for
performing predetermined processing in accordance
with input data;

input data supplying means for supplying input data to the
program of the plurality of the processing means;

storing means for storing feature patterns corresponding to
previously tests input data;

comparison necessity determination means for generating
a feature pattern of the supplied input data, and deter-
mining whether or not a feature pattern which is the
same as the generated feature pattern is stored in the
storing means;

expected data calculation means for, if the feature pattern
which is the same as the generated feature pattern is not
stored in the storing unit, calculating expected data
which is data expected to be obtained as a result of
performing the predetermined processing in accordance
with the supplied input data; and

test result judging means for, in a case where an error
occurs so that the predetermined processing of the pro-
gram is not completed normally, determining that a test
performed by using the supplied input data failed, and, in
a case where an error does not occur so that the prede-
termined processing of the program in accordance with
the supplied input data is completed normally, if the
feature pattern which is the same as the generated fea-
ture pattern of the input data is stored in the storing
means, determining that the test performed by using the
supplied input data succeeded, and, if the feature pattern
which is the same as the generated feature pattern of the
input data is not stored in the storing means, determining
aresult of the test performed by using the supplied input
data by comparing the calculated expected data with
result data of the program.

#* #* #* #* #*

